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Abstract

Motivation: A series of methods in population genetics use multilocus genotype data to assign in-

dividuals membership in latent clusters. These methods belong to a broad class of mixed-

membership models, such as latent Dirichlet allocation used to analyze text corpora. Inference

from mixed-membership models can produce different output matrices when repeatedly applied

to the same inputs, and the number of latent clusters is a parameter that is often varied in the ana-

lysis pipeline. For these reasons, quantifying, visualizing, and annotating the output from mixed-

membership models are bottlenecks for investigators across multiple disciplines from ecology to

text data mining.

Results: We introduce pong, a network-graphical approach for analyzing and visualizing member-

ship in latent clusters with a native interactive D3.js visualization. pong leverages efficient

algorithms for solving the Assignment Problem to dramatically reduce runtime while increasing ac-

curacy compared with other methods that process output from mixed-membership models. We

apply pong to 225 705 unlinked genome-wide single-nucleotide variants from 2426 unrelated indi-

viduals in the 1000 Genomes Project, and identify previously overlooked aspects of global human

population structure. We show that pong outpaces current solutions by more than an order of mag-

nitude in runtime while providing a customizable and interactive visualization of population struc-

ture that is more accurate than those produced by current tools.

Availability and Implementation: pong is freely available and can be installed using the Python

package management system pip. pong’s source code is available at https://github.com/abehr/

pong.

Contact: aaron_behr@alumni.brown.edu or sramachandran@brown.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

A series of generative models known as mixed-membership models

have been developed that model grouped data, where each group is

characterized by a mixture of latent components. One well-known

example of a mixed-membership model is latent Dirichlet allocation

(Blei et al., 2003), in which documents are modeled as a mixture of

latent topics. Another widely used example is the model imple-

mented in the population-genetic program STRUCTURE (Falush et al.,
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2003; Hubisz et al., 2009; Pritchard et al., 2000; Raj et al., 2014),

where individuals are assigned to a mixture of latent clusters, or

populations, based on multilocus genotype data.

In this article, we focus on the population-genetic application of

mixed-membership models, and refer to this application as cluster-

ing inference; see Novembre (2014) for a review of multiple

population-genetic clustering inference methods, including

STRUCTURE. In STRUCTURE’s Bayesian Markov chain Monte Carlo al-

gorithm, individuals are modeled as deriving ancestry from K clus-

ters, where the value of K is user-specified. Each cluster is

constrained to be in Hardy-Weinberg equilibrium, and clusters vary

in their characteristic allele frequencies at each locus. Clustering in-

ference using genetic data is a crucial step in many ecological and

evolutionary studies. For example, identifying genetic subpopula-

tions provides key insight into a sample’s ecology and evolution

(Bryc et al., 2010; Glover et al., 2012; Moore et al., 2014), reveals

ethnic variation in disease phenotypes (Moreno-Estrada et al.,

2014), and reduces spurious correlations in genome-wide associ-

ation studies (Price et al., 2006; Patterson et al., 2006; Galanter

et al., 2012).

For a given multilocus genotype dataset with N individuals and

K clusters, the output of a single algorithmic run of clustering infer-

ence is an N � K matrix, denoted as Q, of membership coefficients;

these coefficients can be learned using a supervised or unsupervised

approach. Membership coefficient qij is the inferred proportion of

individual i’s alleles inherited from cluster j. The row vector ~qi� is in-

terpreted as the genome-wide ancestry of individual i, and the K

elements of ~qi� sum to 1. Each column vector ~q �j represents member-

ship in the jth cluster across individuals.

Although covariates—such as population labels, geographic ori-

gin, language spoken or method of subsistence—are not used to

infer membership coefficients, these covariates are essential for in-

terpreting Q matrices. Given that over 16 000 studies have cited

STRUCTURE to date, and 100 or more Q matrices are routinely pro-

duced in a single study, investigators need efficient algorithms that

enable accurate processing and interpretation of output from clus-

tering inference.

Algorithms designed to process Q matrices face three challenges.

First, a given run, which yields a single Q matrix, is equally likely to

reach any of K! column-permutations of the same collection of esti-

mated membership coefficients due to the stochastic nature of clus-

tering inference. This is known as label switching: for a fixed value

of K and identical genetic input, column ~q �j in the Q matrix pro-

duced by one run may not correspond to column ~q �j in the Q matrix

produced by another run (Jakobsson and Rosenberg, 2007; Jasra

et al., 2005; Stephens, 2000). In our analyses of the 1000 Genomes

(phase 3; Consortium, 2015), label switching occurred in 62.64% of

pairwise comparisons among runs; that is, many matrices of mem-

bership coefficients were identical once columns were permuted to

match, and rapidly finding permutations that maximize similarity

between Q matrices is computationally expensive as K increases.

Second, even after adjusting for label switching, Q matrices with

the same input genotype data and the same value of K may differ

non-trivially. This is known as multimodality (Jakobsson and

Rosenberg, 2007), and occurs when multiple sets of membership co-

efficients can be inferred from the data. We refer to runs that, des-

pite identical inputs, differ non-trivially as belonging to different

modes. For a fixed value of K, a set of runs grouped into the same

mode based on some measure of similarity can be represented by a

single Q matrix in that mode. Many studies using the maximum-

likelihood approach for clustering inference implemented in

ADMIXTURE (Alexander et al., 2009) ignore manifestations of

multimodality (Consortium, 2015; Homburger et al., 2015;

Moreno-Estrada et al., 2013), despite the fact that ADMIXTURE

can identify different local maxima across different runs for a given

value of K (e.g. Verdu et al., 2014). The complete characterization

of modes present in clustering inference output gives unique insight

into genetic differentiation within a sample.

A third complication arises for interpreting clustering inference

output when the input parameter K is varied (all other inputs being

equal): there is no column-permutation of a QN�K matrix that

exactly corresponds to any QN�ðKþ1Þ matrix. We refer to this as the

alignment-across-K problem. A common pipeline when applying

clustering inference methods to genotype data is to increment K

from 2 to some user-defined maximum value Kmax, although some

clustering inference methods also assist with choosing the value of K

that best explains the data (Huelsenbeck et al., 2011; Raj et al.,

2014). Kmax can vary a great deal across studies [e.g., Kmax¼5 in

Glover et al. (2012); Kmax¼20 in Moreno-Estrada et al. (2014)].

Accurate and automated analysis of clustering inference output

across values of K is essential both for understanding a sample’s evo-

lutionary history and for model selection.

The label-switching, multimodality, and alignment-across-K

challenges must all be resolved in order to fully and accurately char-

acterize genetic differentiation and shared ancestry in a dataset of

interest. Here, we present pong, a new algorithm for fast post-hoc

analysis of clustering inference output from population genetic data

combined with an interactive JavaScript visualization using Data-

Driven Documents (D3.js; https://github.com/mbostock/d3). Our

package accounts for label switching, characterizes modes, and

aligns Q matrices across values of K by constructing weighted bi-

partite graphs for each pair of Q matrices based on similarity in

membership coefficients between clusters. Our construction of these

graphs draws on efficient algorithms for solving the combinatorial

optimization problem known as the Assignment Problem, thereby

allowing pong to process hundreds of Q matrices in seconds. pong

displays a representative Q matrix for each mode for each value of

K, and identifies differences among modes that are easily missed

during visual inspection. We compare pong against current solutions

[CLUMPP by Jakobsson and Rosenberg (2007); augmented as

CLUMPAK by Kopelman et al. (2015)], and find our approach reduces

runtime by more than an order of magnitude. We also apply pong to

clustering inference output from the 1000 Genomes (phase 3) and

present the most comprehensive depiction of global human popula-

tion structure in this dataset to date. pong has the potential to be

applied broadly to identify modes, align output, and visualize output

from inference based on mixed-membership models.

2 Algorithm

2.1 Overview
Figure 1 displays a screenshot of pong’s visualization of population

structure in the 1000 Genomes data (phase 3; Consortium, 2015);

final variant set released on November 6, 2014) based a set of 20

runs (K¼4, 5) from clustering inference with ADMIXTURE

(Alexander et al., 2009). In order to generate visualizations high-

lighting similarities and differences among Q matrices, pong gener-

ates weighted bipartite graphs connecting clusters between runs

within and across values of K (Sections 2.2, 2.3). Our goal of match-

ing clusters across runs is analogous to the combinatorial optimiza-

tion problem known as the Assignment Problem (Manber, 1989),

for which numerous efficient algorithms exist (Kuhn, 1955, 1956;

Munkres, 1957). pong’s novel approach of comparing clusters—

2818 A.A.Behr et al.
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column vectors of Q matrices—dramatically reduces runtime rela-

tive to existing methods that rely on permuting entire matrices.

Consider two Q matrices, Q ¼ ½qij� and R ¼ ½rij�. Each weighted

bipartite graph GðQ;RÞ ¼ ðf~q �jg [ f~r �kg;EÞ encodes pairwise similar-

ities between clusters in Q and clusters in R. Edges in G are weighted

according to a similarity metric computed between clusters (detailed

in Supplementary Information); pong’s default similarity metric is

derived from the Jaccard index used in set comparison, and empha-

sizes overlap in membership coefficients without incorporating indi-

viduals who have no membership in the clusters under comparison.

We define an alignment of Q and R as a bipartite perfect match-

ing of their column vectors. pong’s first objective is to find the

maximum-weight alignment for each pair of runs for a fixed value

of K (Section 2.2). This information is used to identify modes within

K, and we randomly choose a representative run (Q matrix) for each

mode found in clustering inference. We call the mode containing the

most runs within each value of K the major mode for that K value

(Fig. 1A; ties are decided uniformly at random). pong’s second ob-

jective is to find the maximum-weight alignment between the repre-

sentative run of each major mode across values of K (Section 2.3;

Fig. 1B, Supplementary Figure S1). Identifying the maximum-weight

alignment within and across K inherently solves the label switching

problem without performing the computationally costly task of

comparing whole-matrix permutations. Last, pong colors the visual-

ization and highlights differences among modes based on these

maximum-weight alignments.

2.2 Aligning runs for a fixed value of K and

characterizing modes
In order to identify modes in clustering inference for a fixed value of

K¼k, pong first uses the Munkres algorithm (Munkres, 1957) to

find the maximum-weight alignment between each pair of runs at

K¼k (Fig. 2A). Next, for each value k, pong constructs another

graph Gk ¼ ðfQN�kg;EÞ, where each edge connects a pair of runs,

and the weight of a given edge is the average edge weight in the

maximum-weight alignment for the pair of runs that edge connects.

(The edge weight between a run and itself is 1.) The edge weight for

a pair of runs in Gk encodes the similarity of the runs, and we define

pairwise similarity for a pair of runs as the average edge weight in

the maximum-weight alignment across all clusters for that pair. We

use the average edge weight to compute pairwise similarity instead

of the sum of edge weights so that edges in Gk are comparable

across values of K.

A

B

Fig. 1. pong’s front end produces a D3.js visualization of maximum-weight alignments between runs, shown here for 20 Q matrices produced from clustering in-

ference with ADMIXTURE (Alexander et al., 2009) applied to 1000 Genomes data (phase 3; Consortium, 2015). Each individual’s genome-wide ancestry within a

barplot is depicted by K stacked colored lines. The left-to-right order of individuals is the same in each barplot. The barplots here are annotated with numbers

(white) indicating which column of the underlying Q matrix is represented by a given cluster. (A) Characterizing modes at K¼4 by displaying the representative

run of the major mode (here, k4r4) and the representative run of each minor mode. Three-letter population codes are shown at the bottom. (B) The maximum-

weight alignment for the representative run for the major mode at K¼4 (k4r4, panel A) to that at K¼ 5. Membership in cluster 4 at K¼4 represents shared ances-

try in East Asian and admixed American populations, and has been partitioned into Clusters 3 and 5 (representing East Asian and Native American ancestry, re-

spectively) in the representative run of the major mode at K¼5

pong: analysis and visualization of latent clusters 2819
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If a pair of runs has pairwise similarity less than 0.97 (by default;

this threshold can be varied), the edge connecting that pair of runs is

not added to Gk; this imposes a lower bound on the pairwise simi-

larity between two runs in the same mode. pong defines modes as

disjoint cliques in Gk, thereby solving the multimodality problem.

Our approach is informed by the fact that modes differ in only a

subset of membership coefficients, eliminating the need for permut-

ing whole matrices to align runs. Once cliques are identified, a run is

chosen at random to be the representative run for each mode at

K¼k, which enables consistent visualization of clustering inference

output within each value of K.

2.3 Aligning a QN�K matrix to a QN�(K+1) matrix
Consider two Q matrices T N�k and UN�ðkþ1Þ where T and U repre-

sent the major modes at K¼k and K ¼ ðkþ 1Þ, respectively. No

perfect matching can be found between the clusters in T and the

clusters in U because these matrices have different dimensions. In

order to align these matrices, pong leverages the fact that column

vectors of membership coefficients are partitioned as K increases

and summed as K decreases (Fig. 1B).

For the pair of clusters ~u �a and ~u �b in U, we define the union node

~u �fa;bg ¼
PN

i¼1 uia þ uib. pong then constructs the matrix Uða [ bÞ,
which contains the clusters ~u �i for i 6¼ a;b and the union node ~u �fa;bg.

Therefore, the dimension of Uða [ bÞ is N�K, which is the same as

the dimension of T (Fig. 2B). pong then finds the maximum-weight

alignment between T and Uða [ bÞ using the Munkres algorithm

(Munkres, 1957). After finding the maximum-weight alignment for

each pair of matrices T and Uði [ j : i 6¼ jÞ, the alignment that has the

greatest average edge weight across all these
kþ 1

2

� �
alignments is

then used to solve the alignment-across-K problem. pong begins align-

ment across K between the representative runs of the major modes at

K¼2 and K¼3 and proceeds through aligning K ¼ Kmax � 1 and

K ¼ Kmax.

3 Implementation

pong’s back end is written in Python. Although providing covariates

is strongly advised so visualizations can be annotated with relevant

metadata, pong only requires one tab-delimited file containing: (i) a

user-provided identification code for each run (e.g. k4r4 in Fig. 1A),

(ii) the K-value for each run and (iii) the relative path to each Q ma-

trix. pong is executed with a one-line command in the terminal,

which can contain a series of flags to customize certain algorithmic

and visualization parameters. pong’s back end then generates results

from its characterization of modes and alignment procedures that

are printed to a series of output files.

After characterizing modes and aligning runs, pong initializes a

local web server instance to host its visualization. pong is packaged

with all its dependencies, such that it can be run without an Internet

connection. The user is prompted to open a web browser and navi-

gate to a specified port, and the user’s actions in the browser win-

dow lead to the exchange of data, such as Q matrices, via web

sockets. These data are bound to and used to render the

visualization.

pong’s front-end visualization is implemented in D3.js. pong’s

main visualization displays the representative Q matrix for the

major mode for each value of K as a Scalable Vector Graphic (SVG),

where each individual’s genome-wide ancestry is depicted by K

stacked colored lines. Each SVG is annotated with its value of K, the

number of runs grouped into the major mode, and the average pair-

wise similarity across all pairs of runs in the major mode (Fig. 1B).

For each value of K, a button is displayed to the right of the

main visualization indicating the number of minor modes, if any

A B

Fig. 2. pong’s back-end model for the alignment of Q matrices, shown here from clustering inference with ADMIXTURE (Alexander et al., 2009) applied to 1000

Genomes data (phase 3; Consortium, 2015). Panel labels correspond to panels in Figure 1, and numbers in graph vertices correspond to the clusters labeled in

Figure 1. (A) Characterizing modes from three runs of clustering inference at K¼4, the smallest K value with multiple modes for this dataset. Edge thickness corres-

ponds to the value of pong’s default cluster similarity metric J (derived from Jaccard’s index; see Supplementary Materials), while edge opacity ranks connections

for a cluster in run k4r4 to a cluster in run k4r3 (or in run k4r10). Note that both cluster 2 and 3 in k4r4 are most similar based on metric J to cluster 2 in k4r3; in order

to find the maximum-weight perfect matching between the runs, pong matches cluster 3 in k4r4 with cluster 1 in k4r3. Bold labels indicate representative runs for

the two modes. Seven other runs (not displayed for ease of visualization) are grouped in the same mode as k4r4 and k4r10; these nine runs comprise the major

mode at K¼4 (Fig. 1A). k4r3 is the only run in the minor mode (Fig. 1A). (B) Alignment of representative runs for the major modes at K¼4 to K¼5.
5
2

� �
¼ 10 align-

ments are constructed between k4r4 and k5r7 (the representative run of the major mode at K¼5), constrained by the use of exactly one union node at K¼ 5. Of

these 10 alignments, the alignment with maximum edge weight is shown and matches cluster 4 in k4r4 to the sum of clusters 3 and 5 in k5r7. The best matching

for all other clusters are shown and informs the coloring of pong’s visualization (see Fig. 1B)

2820 A.A.Behr et al.

 at B
row

n U
niversity on O

ctober 14, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: &hx2019;
Deleted Text: While 
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: user&hx2019;s 
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
http://bioinformatics.oxfordjournals.org/


exist (Fig. 1B). Clicking on the button opens a pop-up dialog box

consisting of barplots for the representative run of each mode within

the K value, and each plot is annotated with the representative run’s

user-provided identification code and the number of runs in each

mode (Fig. 1A). A dialog header reports the average pairwise simi-

larity among pairs of representative runs for each mode, if there is

more than one mode. Users can print or download any barplot in

pong’s visualization in Portable Document Format (PDF) from the

browser window.

What truly sets pong’s visualization apart from existing methods

for the graphical display of population structure is a series of inter-

active features, which we now detail. In the browser’s main visual-

ization, the user may click on any population—or set of

populations, by holding SHIFT—to highlight the selected group’s

genome-wide ancestry across values of K. When mousing over a

population, the population’s average membership (as a percentage)

in each cluster is displayed in a tooltip. Within each dialog box char-

acterizing modes, selecting a checkbox on the top right allows the

user to highlight differences between the major mode’s representa-

tive plot and each minor mode’s representative plot (Fig. 3A).

Clusters that do not differ beyond a threshold between a given major

and minor mode are then shown as white in the minor mode, while

the remaining clusters are shown at full opacity (Fig. 3A; see also

edge weights in Fig. 2A).

4 Results

We ran ADMIXTURE (Alexander et al., 2009) on 225 705 unlinked

genome-wide single-nucleotide variants from 2426 unrelated indi-

viduals in the 1000 Genomes Project (phase 3; Consortium, 2015;

see Supplementary Materials) to characterize population structure

among globally distributed human populations. ADMIXTURE was

run with K ranging from 2 to 10, and 10 runs were generated per

value of K. Thus, a total of 90 Q matrices were produced; Figures 1

and 2 depict pong’s analysis of 20 of these runs. We also applied

CLUMPAK (Kopelman et al., 2015), the state-of-the-art method for

automated post-processing and visualization of clustering inference

output, to these 90 runs (partial results shown in Figures 3B and C;

see also Supplementary Figure S2).

CLUMPAK automatically runs CLUMPP (Jakobsson and

Rosenberg, 2007) for each value of K as part of its pipeline, and pro-

duces visualizations within and across values of K using DISTRUCT

(Rosenberg, 2004), displaying one barplot per mode. Figure 3B

shows CLUMPAK’s reported major mode in the 1000 Genomes dataset

at K¼10, which averages over six runs; all major modes reported

by CLUMPAK can be viewed in Supplementary Figure S2. Using

CLUMPAK’s web server (http://clumpak.tau.ac.il/) with its default set-

tings (including using CLUMP’s fastest algorithm, LargeKGreedy,

for aligning Q matrices for a fixed value of K) took 58 min and 18 s

for post-processing of these 90 runs. We could not apply other

CLUMPP algorithms to the 1000 Genomes dataset using CLUMPAK’s

web server due to the server’s restrictions against exhaustive running

times (Kopelman et al., 2015). We also installed CLUMPAK locally on

Linux machines running Debian GNU/Linux 8 with 8 GB of RAM.

Processing these 90 Q matrices took 74.275 hours using CLUMPP’s

LargeKGreedy algorithm; using CLUMPP’s Greedy algorithm,

which has increased accuracy over LargeKGreedy, CLUMPAK did not

complete processing these Q matrices after four days. We also

applied CLUMPP’s FullSearch algorithm, its most accurate algo-

rithm, to the 10 Q matrices where K¼10; after 6.78 days, the job

had still not completed.

Under its default settings, pong parsed input, characterized

modes and aligned Q matrices within each value of K, and aligned

Q matrices across K in 17.5 seconds on a Mid-2012 MacBook Pro

with 8 GB RAM. After opening a web browser, pong’s interactive

visualization loaded in an additional 3.2 s (Supplementary Figure S1

shows the main visualization).

In Figure 3A, pong identifies four modes at K¼10 in the 1000

Genomes dataset (phase 3). Light blue represents the cluster of mem-

bership coefficients first identified at K¼10 (see also Supplementary

Figures S1 and S2). In run k10r4 (representing 4 out of 10 runs),

light blue represents British/Central European ancestry in the major

mode (CEU and GBR). However, light blue represents South Asian

ancestry (GIH) in 3 out of 10 runs (e.g. run k10r7), Puerto Rican an-

cestry (PUR) in 2 out of 10 runs (e.g., run k10r3), and Han Chinese

ancestry in run k10r9. pong’s display of representative runs for each

mode allows the user to observe and interpret multiple sets of mem-

bership coefficients inferred from the data at a given value of K.

In contrast, the minor mode CLUMPAK outputs (Fig. 3C) is the

same as pong’s major mode (Fig. 3A), while CLUMPAK’s major mode

reported at K¼10 (Fig. 3B) averages over all minor modes identified

by pong. The light blue in CLUMPAK’s reported major mode could be

easily misinterpreted as shared ancestry among South Asian, East

Asian, and Puerto Rican individuals, when in actuality these are dis-

tinct modes. We note that the highest-likelihood value of K for the

1000 Genomes data we analyzed is K¼8; at that value of K, we

also see that CLUMPAK’s major mode suggests shared ancestry among

individuals that are actually identified as having non-overlapping

membership coefficients when individual runs are examined

(Supplementary Figures S1 and S2).

Figure 3A is the first visualization of some of the modes observed

in population structure of 1000 Genomes phase 3 data, as

Consortium (2015) ran ADMIXTURE exactly once per K value [see

Extended Data Figure 5 and Supplementary Materials of

Consortium (2015)]. Supplementary Figure S3 shows pong’s visual-

ization with consistent colors of all Q matrices released by

Consortium (2015), K¼5 through 25; pong was able to process

these Q matrices and render its visualization in 67.06 s. The modes

identified in Figures 1, 3 and Supplementary Figure S1 differ sub-

stantially from the results reported by Consortium (2015). For ex-

ample, in Figure 3A, pong depicts substructure in Puerto Rico and in

China that is not observed in Extended Data Figure 5 by

Consortium (2015). This could be due to different filters applied to

the input SNP data (e.g. we removed relatives from data but did not

filter based on minor allele frequency; see Supplementary

Information), and we further note that these contrasting results indi-

cate the need for efficient and accurate methods for processing and

visualizing Q matrices.

5 Discussion

Here we introduce pong, a freely available user-friendly network-

graphical method for post-processing output from clustering infer-

ence using population genetic data. We demonstrate that pong ac-

curately aligns Q matrices orders of magnitude more quickly than

do existing methods; it also provides a detailed characterization of

modes among runs and produces a customizable, interactive D3.js

visualization securely displayed using any modern web browser

without requiring an internet connection. pong’s algorithm deviates

from existing approaches by finding the maximum-weight perfect

matching between column vectors of membership coefficients for

pairs of Q matrices, and leverages the Hungarian algorithm to

pong: analysis and visualization of latent clusters 2821

 at B
row

n U
niversity on O

ctober 14, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text:  &hx2014; 
Deleted Text:  &hx2013; 
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: )
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: &hx2019;
http://clumpak.tau.ac.il/
Deleted Text: <italic>P</italic>&hx2019;
Deleted Text: utes
Deleted Text: econds
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: econds
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: (
Deleted Text: [TQ1]
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: &hx2019;
Deleted Text: econds
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw327/-/DC1
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/


efficiently solve this series of optimization problems (Kuhn, 1955,

1956; Munkres, 1957).

Interpreting the results from multiple runs of clustering inference

is a difficult process. Investigators often choose a single Q matrix at

each value of K to display or discuss, overlooking complex signals

present in their data because the process of producing the necessary

visualizations is too time-consuming. pong’s speed allows the investi-

gator to focus instead on conducting more runs of clustering inference

in order to fully interpret the clustering in her sample of interest.

Currently, many population-genetic studies only carry out one run of

A

B

C

Fig. 3. Visualizations of modes in population structure identified by pong and CLUMPAK at K¼ 10 for clustering inference with ADMIXTURE (Alexander et al., 2009)

applied to 1000 Genomes data (phase 3; Consortium, 2015). The new cluster of membership coefficients first identified at K¼10 is denoted by light blue in each

barplot. (A) pong’s dialog box of modes at K¼ 10, with multimodality highlighted. (B) CLUMPAK’s major mode at K¼10 averages over six runs of clustering infer-

ence output; the reported mean similarity score among these six runs is 0.811. South Asian (GIH), Han Chinese (CHB and CHS), and Puerto Rican (PUR) individ-

uals all have ancestry depicted by the light blue cluster in this plot. The six runs averaged here are instead partitioned into three minor modes by pong in panel

A. (C) CLUMPAK’s minor mode at K¼ 10 averages over four identical runs (mean similarity score is 1.000). This barplot contains the same information as the barplot

of k4r10, representing pong’s major mode in panel A

2822 A.A.Behr et al.
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clustering inference per value of K (Consortium, 2015; Hallast et al.,

2016; Homburger et al., 2015; Jeffares et al., 2015; Lorenzi et al.,

2016; Mathieson et al., 2015; Moreno-Estrada et al., 2013), particu-

larly when using ADMIXTURE’s maximum-likelihood approach

(Alexander et al., 2009) to the inferential framework implemented in

STRUCTURE (Pritchard et al., 2000). The likelihood landscape of the in-

put genotype data is complex, and can hold different local maxima

for a given value of K (see Verdu et al., 2014). Combining pong’s

rapid algorithm and detailed, interactive visualization with posterior

probabilities for K reported by clustering inference methods will allow

investigators to accurately interpret results from clustering inference,

thereby advancing our knowledge of the genetic structure of natural

populations for a wide range of organisms. We further plan to extend

pong to visualize results from other applications of mixed-

membership models and to leverage the dynamic nature of bound

data to increase the information provided by pong’s visualization.
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